Sinequa社がコグニティブ検索のリーダーに選ばれました

米国ニューヨーク州 – 2019年5月29日 – コグニティブ検索・アナリティクスのリーダーと評価されているSinequa社は、“The Forrester Wave™: Cognitive Search, Q2 20191.”でリーダーに選ばれました。

当レポートで、独立系調査会社であるForrester Researchは次のように述べています。「Sinequaはインテリジェンスを増大させます。 Sinequaが目指しているのは、企業における全従業員が、適切な情報に素早くアクセスできる能力を提供することで、組織を”インフォメーション・ドリブン”へと変革をもたらすことです。具体的には、コグニティブ検索テクノロジーを駆使し、知見や洞察を明らかにし、特定分野におけるエキスパートサーチを実現させます。またSinequaは、最新のオープンソースのMLテクノロジーに、独自のNLUテクノロジーを、絶妙なバランスで組み合わせたエンジンを搭載しています。ライフサイエンスや金融サービス、製造業界などの専門分野にも柔軟に対応できるソリューションです。」

Forrester Waveは、顧客が導入選定する際に役立つ、テクノロジー市場のベンダー・製品を調査した報告書です。 このレポートでは、「Current Offering(現行の製品)」や「Strategy(戦略)」、「Market Presence(市場でのプレゼンス)」の3カテゴリで、合計12社のベンダーが評価されていました。 Sinequaは、Current Offeringで情報に対する高度なハンドリング力が、Strategyでは実行能力・ソリューションロードマップ・カスタマーサービス、またMarket Presenceでは市場の認知度と、各カテゴリそれぞれの評価基準において、最高のスコアを獲得しました。

今回の評価を受け、Sinequa社の代表取締役社長兼最高経営責任者(CEO)のAlexandre Bilger氏は、次のように述べています。「我々は、Forresterのレポートでリーダーとして認められたことを光栄に思います。膨大な量のエンタープライズデータを取り込んで分析することで、顧客は状況に即した実用的な情報をタイムリーに引出し、洞察の獲得や意思決定、生産性の向上に繋がります。我々は、優れたプラットフォームと、金融サービスや製造、製薬業界の組織をサポートする能力に自信を持っています。」

さらにレポートでは、「Sinequaの強みはデータコネクターやingestion intelligence(データソースに対するインデックス作成)、intent intelligence(検索に対する的確な回答)、チューニングツールにあります。この高度なコグニティブ検索アプリケーションを導入したお客様は、Sinequaの幅広くて深みのあるingestion intelligenceの性能を理解できることでしょう。」とも述べています。そして「Sinequaの強力なロードマップには、最新のオープンソースAIテクノロジー活用も構想に入っています。」と締めくくっています。

Sinequaプラットフォームは、最近Angular 7を基盤にした、レスポンシブ・ユーザーインターフェース設計フレームワークを通じて、エンドユーザーへ洞察を提示する能力が強化されました。同プラットフォームには、SparkまたはTensorFlowに基づく機械学習モデルが搭載されたため、現在はインデックス作成パイプラインが直接適用できるようになりました。またクエリーや言語に対して、意図・意味の解釈をさらに自動化するための、大幅な新機能が追加されています。

分散展開における全てのコンポーネント間でのインフライト暗号化や、ドキュメントキャッシュを保護するためのインデックス作成時など、更に高度なレベルの暗号化もサポートされるようになりました。Sinequaでは、全社におけるディレクトリへのアクセス権限が変更になると、自動的にデータへのアクセス権限も更新することができます。

レポート「Forrester Wave:Cognitive Search, Q2 2019」は、以下からダウンロードできます。https://go.sinequa.com/forrester-wave-2019.html

1 Forrester Research, Inc., “The Forrester Wave™: Cognitive Search, Q2 2019” by Mike Gualtieri, with Srividya Sridharan and Elizabeth Hoberman.

Sinequa社について

Sinequa社は、主にフォーブス・グローバル2000の企業や政府機関向けに、情報や専門知識、知見を結び付け、組織をインフォメーション・ドリブン型へと導く、AIベースの検索・分析プラットフォームを提供するソフトウェアベンダーです。お客様は、同社が提供するプラットフォームを通じて、意思決定に必要な知見や情報が得られます。それら情報の背景や状況の理解を支援するため、企業に蓄積された膨大な情報を有効活用でき、生産性向上も見込めるようになります。このプラットフォームは、莫大な容量でしかも多様・複雑なデータとコンテンツを保有する、大規模組織のプロジェクト経験を通じて開発されました。

Sinequa社プラットフォームは、お客様の組織をインフォメーション・ドリブン型への変革を支援します。

詳細は、https://www.sinequa.com をご覧ください。

+1Share on LinkedInShare on Twitter

The Heat in The Trend Point: June 3 to June 7

Living in a globalized world where business operates with an evolving set of practices and norms, there are many areas where enterprise technology is impacted. Several recent articles that point to this idea caught our attention in The Trend Point over the past week.

There is an imminent need for solutions that are geared towards large businesses that are operating on a global scale, and have to deal with large amounts of data. “Getting a Global Perspective on Enterprise Search” echoes this idea:

The first day of the conference started with Ed Dale of Ernst & Young talking about implementing enterprise search for a truly global organisation. E&Y’s search is over a surprisingly small number of documents (only 2 million or so) but they are lucky enough to have a relatively large and experienced team running their search as an ongoing operation – no ‘fire and forget’ here (an approach often taken and seldom successfully).

It is no surprise that we are seeing an article like “Sage Advice for Data Storage and Analytics” call for consideration towards scalability and searchability. The following information was relayed in this post:

The repository should be highly scalable with respect to the storage capacity and amount of requests it can handle. Because of ever generating digital content out of various business processes, size of the stored content can grow rapidly and the storage limit should not be a roadblock for any content repository. Similarly, the architecture should be capable enough of handling a varying number of user requests.

Many terms like semantic search, natural language processing and text analysis are popping up everywhere in regards to enterprise software. We saw the following summary in “SAP HANA Project Addresses Text Analysis” break down some of these definitions:

The two terms are used interchangeably by a lot of people. There is a lot of gray area in defining ‘Text Analysis’ and differentiating it from ‘Text Mining.’ But from the SAP perspective, ‘Text Analysis,’ refers to the ability to do Natural Language Processing, linguistically understand the text and apply statistical techniques to refine the results. Text Mining is applying algorithms, like predictive analytics, for post-processing of data (akin to data mining).

As successful businesses become global they often need increased scalability and text analysis capabilities. One unique feature to Sinequa’s Unified Information Access is that in addition to the semantic search and text analysis functionality (“Natural Language Processing”), this solution also has the capability to interpret text in multiple languages, and it scales to very large volumes. An enterprise search solution is not prepared to enter the globalized market without such technology. Sinequa is particularly poised to address this aspect because their research continues every day. Just as language naturally evolves, Sinequa’s methods also evolve to mirror such changes.

Jane Smith, June 12, 2013

Sponsored by ArnoldIT.com, developer of Beyond Search

+1Share on LinkedInShare on Twitter