Sinequa Helps Box Customers To Be Information-Driven

Many customers that use Box for cloud content management are typically large, geographically distributed organizations. The four scenarios below describe common ways that Sinequa helps these customers leverage their enterprise information to become information-driven.

Increase the Signal, Decrease the Noise

noise

Customers who have migrated even a portion of their enterprise content to Box have made a significant step.  Workers in their organization can no doubt share and collaborate more easily than ever before; they no doubt have reduced email overhead; and they are probably working the way they want to given all of the friendly integrations with Box, including Outlook, Office365, Google Docs and the like.   However, being in the cloud does not automatically mean the valuable “signals” in your data rise above the “noise”.  Messy data migrated to the cloud is still messy data.  Sinequa helps workers quickly narrow in on the information and insights necessary to do their job effectively and with confidence.  By analyzing the content and enriching it using natural language processing and machine learning algorithms, Box users can quickly find the information and insights they need to be effective and responsive.

Connect Data

connect-data

Many Box customers run their business with other enterprise applications and information repositories, all of which contain data and content related to the information
stored in Box.  Sinequa brings advanced analytics and cognitive techniques to “connect” the data and bring context across all of the various enterprise sources, whether they be in the cloud or on premise.  By connecting the data, knowledge workers can better navigate and see how the data and connect fit together along topical lines, regardless of how many repositories make up the enterprise information landscape.

Identify Knowledge & Expertise

Screen Shot 2017-10-13 at 2.40.37 PMAs previously mentioned, many Box customers are large (or even very large) geographically distributed organizations with expertise in a wide variety of subject matter areas.  In these organizations, specific experts are difficult to identify given the size and distributed nature of the organization.  This is a modern problem that requires a modern solution.  As users store content and collaborate within Box, Sinequa’s advanced cognitive capabilities analyze that content to determine not only the areas of expertise across the organization but who the specific experts are and surfaces that information to end users.  This connects people across geographic and departmental boundaries, accelerating innovation and elevating the performance of the overall organization.

Leverage 360º Views

Screen Shot 2017-10-13 at 2.42.23 PM

Think of all the “entities” that are critical to Box customers running their business.  These business entities include customers, either specific individuals (B2C) or accounts (B2B), products, parts, drugs, diseases, financial securities, regulations, etc.  Having all of the enterprise data virtually connected by Sinequa makes it possibly to provide a unified “360º View” of these various entities to bring all of the right information to the right person at the right time.
As you can see, leveraging Sinequa to contextualize the information within Box and other enterprise repositories not only boosts productivity and keeps knowledge workers in the flow but has repeatedly proven to enhance customer service, improve regulatory compliance and increase revenue within different areas of the business.  Achieving these benefits positively impacts the bottom line and serves as validation that an organization has become truly information-driven.
+1Share on LinkedInShare on Twitter

Cognitive R&D – Leveraging Cognitive Search and Analytics to Amplify Research and Development Expertise

Forces of global competition, narrow margins, higher product development costs, and tenuous exclusivity holds drive organizations to push innovation, seek cost cutting strategies, and go-to-market as quickly as possible. Demands change frequently while regulatory and compliance standards become even more stringent. Organizations must keep up, and the pressure on research and development (R&D) never stops. R&D is the critical driver within the organization, whether within a large aircraft manufacturer or a leading automobile company looking to develop cutting edge products and services or a pharmaceutical company accelerating time-to-market for new drugs or a CPG company reinventing waning products. R&D thrives on information: customer information, expert information, product information, scientific information, market information, and competitive information.

To be at the forefront of innovation, R&D departments need complete visibility into both new and historical information across the entire enterprise as well as access to research from external public and premium information services. This is no simple task in today’s world where we are inundated with data — more data, more opportunities and more challenges. As a result, many companies depend on Cognitive Search and Analytics (CS&A) solutions to harness insightful, high-quality information and fuel innovation within their product and solution portfolios.

THE PRESSURE ON R&D

As organizations strive to create value, enhance customer experiences, and differentiate themselves from their competition, they have placed demands on their R&D departments to:

  • Accelerate delivery of innovative products to market
  • Optimize and manage available resources and knowledge while leveraging intellectual property
  • Devise methods to reduce product development costs and eliminate re-work
  • Improve product compliance both internally and externally and deliver safer, compliant products faster
  • Understand consumer and market demands and improve responsiveness
  • Resolve product issues quickly and efficiently to gain and keep customer trust

To meet these demands, R&D depends on complex scientific and engineering content that contains implicit conceptual relationships that can and should be semantically linked to simplify access to the knowledge embedded in that content.

HOW COGNITIVE SEARCH AND ANALYTICS HELPS

Cognitive Search and Analytics solutions amplify the expertise of R&D departments by surfacing insights from data across the enterprise, irrespective of location and format. From a single, secure access point, these solutions enable R&D professionals to unlock relevant and timely product research that helps make informed decisions. In addition, these capabilities are not limited to internal information; users can quickly access information from external Web sites and other applications, deriving relevant information and seamlessly integrating with internal enterprise information.

Cognitive Search and Analytics solutions enable enterprises to maximize the value of their intellectual property. Powerful search relevance and navigation capabilities enable researchers to find valuable pieces of past research and even parallel work going on without each group knowing about the other — eliminating duplicate work, reducing time spent in trials and shortening development cycles. These solutions allow employees to tag, bookmark and comment on documents, enabling collaboration and making teams more innovative, efficient and productive. Surfacing this existing knowledge enables workers to leverage the past work of distant or former researchers to benefit future research. Dynamically delivering relevant information, surfacing knowledge and enabling collaboration can decrease R&D costs significantly. Because R&D departments need to comply with a myriad of complex regulations, they need to be aware of relevant regulations without having to sift through the myriads themselves. This visibility enables R&D to stay abreast of regulatory mandates and efficiently manage compliance. Organizations can also leverage these solutions to send alerts to employees when there are new policy and compliance changes so that relevant R&D stakeholders are immediately notified.

Managing and maintaining product specifications is a critical function within R&D. Cognitive Search and Analytics solutions can access virtually any data source and expose changes when information is deleted or becomes outdated. These solutions can alert workers when any new information is created that impacts their specific process in the development cycle. These solutions also track and respect the access permissions accorded by each target application; only those with the correct privileges can access restricted information. Cognitive Search & Analytics solutions give researchers clear insight into product requirements and enable them to collaboratively develop safer, higher quality products that meet regulatory requirements.

RAPID RETRIEVAL OF RELEVANT INFORMATION MAKES THE DIFFERENCE

Extracting relevant information from vast and complex data volumes is a challenge that requires a sophisticated and scalable solution. The Sinequa Cognitive Search and Analytics platform handles all structured and unstructured data sources and uses Natural Language Processing (NLP), statistical analysis and Machine Learning (ML) to create an enriched “Logical Data Warehouse” (LDW). You can think of it as a repository of information about data and about relationships between data, people, concepts, etc. This LDW is optimized for performance in delivering rapid responses to users’ information needs. Users can ask questions in their native language or ask that relevant information be “pushed” to them in a timely fashion when it emerges. More than 150 connectors ready for use “out of the box” make the process of connecting multiple data sources fast and seamless. Company and industry-specific dictionaries and ontologies can be easily integrated, putting domain-specific knowledge “under the hood” of the Sinequa platform, making it an intelligent partner for anyone in search of relevant information.

With Sinequa, researchers, designers and engineers have immediate access to all the information needed to work productively.

With Sinequa, researchers, designers and engineers have immediate access to all the information needed to work productively.

The advanced semantic capabilities within Sinequa’s platform provide strong relevance in 21 different languages to assist organizations with even the most geographically and linguistically diverse workforce.

REAL-WORLD EXAMPLE: AMPLIFYING BIOPHARMA EXPERTISE

Consider one of Sinequa’s biopharma customers, a research-intensive organization dealing with a vast number of highly technical documents, produced both in-house and externally. The information in these documents varies according to the field of its origin – e.g. medical, pharmaceutical, biological, chemical, biochemical, genetic, etc. – and may deal with diseases, genes, drugs/active agents, and mechanisms of action. A lot of the information is textual, but there is also structured information, like molecular structures, formulae, curves, diagrams, etc. The volume of this information is on the order of magnitude of about 500 million documents and billions of database records.

Now consider the more than 10,000 R&D experts within the organization trying to leverage this information daily. They need to be able to ask topical questions, find relevant people and documents, and explore the vast information landscape to discover knowledge. The Sinequa platform supports this by plowing through the hundreds of millions of documents and equally large amounts of structured data, analyzing the data, analyzing the natural language user queries, and classifying results by category in real time. With the data tamed and enriched, it is presented to the user via a simple, intuitive interface with faceted navigation aids that allow the user to filter results further based on structural attributes that are either explicit or were intelligently derived by the system. The interfaces, also referred to as search-based applications (SBAs) are configured to expose functionality that is very specific to an R&D expert, aligning the solution with the goals of the user.

The Sinequa solution has proven to be very valuable to the customer in question, putting both internal and external research–related information that scientists need for research, development, and decision making into a single virtual repository with advanced navigation and retrieval capabilities. It has also proved to be very beneficial to teams of research and development contributors by allowing experts around the world to collaborate more easily through a single research application. Features such as navigation by topic across multiple repositories, de-duplication of similar documents, and improved research capabilities have all made knowledge workers more efficient and innovative.

CONCLUSION

Sinequa’s Cognitive Search & Analytics platform leverages relevant customer and market information to give R&D organizations insight and the ability to react quickly to demands. Teams utilize this platform to collaborate and share information. Sinequa effectively eliminates data silos and delivers relevant information from data to users in their business context, such that they can make better decisions, drive innovation, reduce risk, and be more efficient, which in turn enables forward-thinking R&D departments that thrive on continuous product improvements and introductions to amplify the collective expertise of the organization.

+1Share on LinkedInShare on Twitter

Cognitive M&A – Leveraging Cognitive Search & Analytics for Successful Mergers and Acquisitions

Mergers and acquisitions provide one avenue for organizations to grow via synergistic gains, strategic positioning and diversification. Even with an abundance of M&A activity, mergers tend to fail at the business process and information integration levels. The success of a merger can be greatly enhanced when business processes are integrated and information is seamlessly unified by gathering it from both organizations, analyzing it, establishing clusters of semantically similar information, and finding common patterns. Cognitive search & analytics platforms provide the necessary capabilities to accomplish all of this, thereby helping facilitate merger and acquisition initiatives and significantly increasing the odds of success.

ANATOMY OF A SUCCESSFUL MERGER

Let’s envision the details of how this impacts the relevant stakeholders. At the outset, a cognitive search & analytics platform provides the organization with unified access to information from both organizations and beyond. Users can leverage out of the box machine learning algorithms to explore and navigate this information. For example, the Clustering algorithm groups documents into topically-related clusters by analyzing the content and metadata. This is very useful for topical navigation and helps stakeholders identify similar documents based on named entities within the content. Automated classification is another useful technique for unifying information and improving navigability. In certain circumstances such as when classification rules do not exist but a properly classified sample set of content does, a Classification by Example algorithm can automatically create a model from the sample set, which can subsequently be applied across the combined set of content from both organizations to further enhance findability for stakeholders.

Sinequa CollaborationMachine learning algorithms can also help match experts with other experts as well as relevant documents across the consolidating organizations. This is done dynamically by analyzing what people write and collaborate around to compute user profiles, which are subsequently analyzed to compute “peer groups” that connect stakeholders with similar interests and expertise across the consolidating enterprise. With these peer groups established, experts can be more effectively presented with relevant content using a collaborative filtering technique that compares preferred content across the peer group and surfaces valuable content to members of the peer group who have not previously been exposed to it. As you can see, a cognitive search & analytics solution facilitates smart information sharing across the consolidating enterprise. Usually a lack of sophisticated security controls impedes greater openness between consolidating entities. A search-based application, however, respects existing security profiles—making it easier to merge infrastructures securely.

A cognitive search & analytics solution also helps to identify areas of risk and to solve outstanding issues before financial consequences occur. For example, risks could include content containing Personally Identifiable Information (PII) or content with no security associated. This is done by employing text-mining agents (TMAs), which provide out-of-the-box rules-based capabilities to extract elements from unstructured text. TMAs can be configured to incorporate terms and phrases specific to any part of the business. A cognitive search & analytics solution enables a quick, seamless and successful consolidation of organizations. Typically, in a large enterprise this is done as a series of search-based applications (SBAs) that each pull from a Logical Data Warehouse (LDW), which is essentially central cache of unified information.  In the next sections, we will look at specific areas of the business that typically benefit the most from this approach.

SALES AND MARKETING 

Once consolidation is underway, the organization must move quickly to combine sales and marketing activities, sales methodologies, pipelines and channels to drive revenue in the field and promote up-selling and cross-selling into new and existing market segments. The organization wants to minimize any potential lapse in the sales cycle for the newly merged company.

A cognitive search & analytics solution immediately equips sales teams with a single global access point to relevant, real-time and insightful information on products and customers—sales and customer notes, sales processes, product information and sales training are all immediately accessible. As previously mentioned, this is typically done using a dedicated search-based application (SBA).

An SBA for Sales and Marketing could provide unified access to the separate CRM systems and allow for the addition of shared content. As a result, no sales note, customer quirk or prospect is lost during consolidation. An SBA also offers the ability to push alerts and notifications out to users.  As sales representatives learn about new products,

The SBA provides unified access to new marketing materials, sales process documentation, research documents and news articles to assist in training and ensures that they are effectively representing the newly expanded product line. Often when a merger occurs, customers know more about the products from the other company than the sales reps. With a cognitive search & analytics solution in place, an empowered and unified sales team can competently sell the acquired products and services.

FINANCE, ACCOUNTING, AND HUMAN RESOURCES

Finance, accounting and human resources are other key departments that need to be unified. A dedicated SBA provides a complete and consolidated access to information from the disparate ERP systems.

A cognitive search & analytics solution provides administrators and content curators with the visibility across the enterprise necessary to manage all documentation from both parties related to the merger effectively and securely.

Multiple IT systems and finance systems always increase the complexity of a merger.  Organizations acquiring a large IT infrastructure need to identify the systems acquired and the value of the data in these systems.

A cognitive search & analytics solution enables the required visibility and helps to expose any redundant or unused systems that might be eliminated. For example, a cognitive search & analytics solution can be used to monitor and analyze usage of underlying repositories and applications to show what sources are being used less frequently. Some organizations have even been able to standardize and eliminate the need for multiple search applications. In other cases, a cognitive search & analytics solution works as a stop gap providing access to legacy systems that should be migrated, thereby reducing the cost of forcing an immediate migration.

Organizations can leverage Sinequa’s scalable platform as the cognitive search & analytics solution to connect information across the consolidating enterprise by leveraging previously mentioned machine learning algorithms like Clustering, Classification by Example, etc. as well as more traditional rules-based enrichment techniques. This helps the organization deliver unified access to stakeholders, ensure accuracy, reduce risk and gain insight into the complex systems across all affected departments. Enterprise Application Integration is usually a multi-year project. While cognitive search & analytics solutions do not replace such an integration, they provide comprehensive visibility in a very short time.

RESEARCH AND DEVELOPMENT

The cost of R&D increases when multiple teams unknowingly work on solutions to the same problems or fail to recognize and utilize the work done in past research. Cognitive search & analytics solutions positively impact R&D by accurately combining research data from the consolidating organizations, giving users real-time access and reducing the duplication of content, efforts, and sometimes entire projects. They do this by connecting experts working in the same subject area.

Sometimes a key driver in a merger or acquisition is gaining access to intellectual property, which often includes the expertise of the other organization’s knowledge workers. Sinequa’s Find the Expert capability gives employees from each organization the ability to discover the most knowledgeable people on a variety of topics, to view their profiles and to find associated information. This accelerates R&D discovery by enabling users to navigate information in clusters—leveraging the machine learning algorithm—and by content refinements.

These tools enable users to find past research and hidden relationships – including relationships with external experts with whom both companies have collaborated in the past – that would have otherwise been missed, thereby increasing speed-to-market.

The organization is also able to gain greater market share by leveraging and optimizing the information acquired instead of simply discarding projects in progress. One of the key drivers in a merger is the ability to retain and share as much knowledge as possible. Sinequa’s collaborative features spawn greater innovation in the newly expanded R&D department in the form of capabilities such as tagging, bookmarking and automatic feedback loops. For example, a scientist can comment on an old publication and explain how it relates to new research, which subsequently increases go-to-market speed by enabling broader collaboration.

HOW IT WORKS

Sinequa has developed an innovative and simple-to-use Cognitive Search and Analytics platform that offers Unified Information Access (i.e. information from any source, in any format, whether structured or unstructured, internal or external, through a single platform and user interface) to respond to even the most difficult information access challenges of large companies and organizations. The solution is composed of three main components:

  • A powerful (natural language) analytics platform that gives structure to the most unstructured content. The analysis and indexing of data solve typical enterprise challenges involving multiple sources, unstructured and structured content, multiple languages, high data volume and high update frequencies.
  • Simple and intuitive user interface that brings simplicity to complex search and analytics. Sinequa’s out-of-the-box user interface leverages the familiarity of common search tools enhanced with faceted search tools (i.e. filters) and analytics, giving the user an immediate picture of the information available from all enterprise sources. The UI is easily customizable to reflect specific appearance and navigation goals as well as corporate standards/branding, and is extensible, allowing third-party or custom UIs to be easily integrated via a provided search API (Application Programming Interface).
  • A powerful, open and scalable technical architecture (GRID). Sinequa’s highly-scalable architecture was designed from the ground up to support multiple search needs starting on a single server cluster, providing a cost-effective solution that allows companies to respond to multiple business needs now and in the future with minimal hardware investment (whether the application is deployed on premise or in a private cloud). The architecture is distributed and modular to support virtually any data source addition and growth, often without any additional infrastructure investment.

Leveraging these combined components from within the Sinequa platform has proven to accelerate the integration of business processes and to amplify the expertise of the whole by seamlessly and securely unifying disparate information from each organization involved in a merger or acquisition.

CONCLUSION

A cognitive search & analytics platform facilitates information transparency and communication across the entire enterprise, minimizing disruptions while integrating teams and departments during mergers and acquisitions. Applying this technology as a solution effectively operationalizes the information access, speed and control needed to ensure long-term success in the newly formed organization.

+1Share on LinkedInShare on Twitter

Finding the Right Expert: Business Critical and Obtainable Through Big Data Analytics

As we recently shared in the Big Data Paris guide, some of the most interesting work in the big data industry happens when large, multi-national organizations look inward and across their business ecosystem, to see what they know and who knows what.

Many organizations are challenged by the need to rapidly, accurately find experts on any given topic within their ranks. They wonder:

  • Who’s keeping track of this information? Where is it stored?
  • How can we find the real experts on a particular technology or an active molecule in a drug when our expertise is spread across continents?
  • What if the expertise is spread through a myriad of affiliated partners, or in the heads of a few people within thousands of personnel?

This is where big data analytics comes into play.

Locating true experts within an organization requires going beyond HR paperwork, Linked-In profiles and CV declarations – right to the work. It’s true: the proof is in the pudding and organizations must sift through publications, project reports, patent filings, HR data and mountains of structured data to find true experts to quickly respond to RFPs, initiate new projects and avoid costly clinical trial repetition. But what about all of that unstructured data? What about when a chemical compound appears in papers via generic name, brand name, scientific name or even a molecular description? Who can tie it all together?

Increasingly, more large enterprise have seen the light and now successfully use data analysis to rapidly, accurately find true experts for better business outcomes. Enormous companies are learning to be more nimble, with the help of big data.

Global biopharmaceutical giant, AstraZeneca, leading industrial company Siemens, and multi-national IT services powerhouse Atos are such companies. These organizations partnered with Sinequa on expert localization, using their greatest asset: data in multiple forms, stored inside and outside of the company. Moving to a partner like Sinequa was a simple decision: the Paris-based company has a unique ability to cull through both structured data and unstructured data – emails, social networks, publications, and reports – to create a richer, fuller picture of the true company experts on any given topic.

To get the complete picture, data must be analyzed using Natural Language Processing (NLP) capacities to “understand” what topics are being written about in real terms. For instance the platform allows for identification of a topic, even beyond words used in queries. Thus, asking for “Aspirin” will deliver results for Acetylsalicylica Acid, 2-Acetoxybenzoic acid, Ecotrin, Acenterine, Acylpyrin, Polopiryna, Easprin, and Acetylsalicylate. The platform can suggest authors, emails and other resources to contact for clarification. It is truly astounding. Even more, a network can be created, linking expert to expert.

Like AstraZeneca and Siemens, Atos has thousands of personnel. Atos had rapid growth in a short time frame, from a French company with 2,000 employees to a global player of more than 80,000 employees across many locations and through partners and alliances. They found a way to solve the problem of quickly finding experts in the organization with a platform that allowed rapid-fire sifting through masses of text and data: identifying authors and concepts to quickly map networks of experts and pinpoint links between them .

Why should all of this matter? Shouldn’t big data be all about capturing customer trends and finding better ways to market externally? Not necessarily.

For companies that take on massive R&D projects or global technology management, for example, finding the right people at the right time can result in significant gains for the enterprise at a time when business success is crucial. It can prevent reinventing solutions already in place, thus freeing financial and human resources for growth. Putting the right people in place on any project can increase customer satisfaction by rapid and competent project implementations, and protect margins.

Teamwork, complementary expertise is most often the underpinnings of innovation and problem solving. People are indeed, the heart of any organization and putting them together accomplishes great things.

+1Share on LinkedInShare on Twitter

Analyse de Big Data en Entreprise: découvrir les véritables experts sur un sujet donné

Article de Sinequa apparu dans Big Data Info

Le Big Data nous a raconté de belles histoires ces dernières années. Parmi celles qui nous ont le plus marqués, le Big Data en entreprise : ou quand ces sociétés multinationales se mettent à chercher de l’information pour découvrir de l’expertise et des réseaux d’experts dans leur écosystème.

« Qui a gardé une trace de ce dossier ? », « comment trouver un expert sur une nouvelle technologie ou sur le prochain produit innovant? ». Ce sont des questions d’une difficulté surprenante auxquelles se confrontent les entreprises quand leur expertise est étendue au niveau mondial dans leur organisation ou à travers un réseau de partenaires. Et c’est bien là où les technologies du Big Data jouent un rôle déterminant.

Identifier les véritables experts au sein d’une organisation nécessite bien plus que des informations de ressources humaines du type CV, profils LinkedIn ou extraits de bases de données des collaborateurs… Comment faire alors ? La réponse est simple : c’est au fruit que l’on juge l’arbre !

Pour trouver les véritables experts et pouvoir, par exemple, répondre dans les délais à un appel d’offres, les entreprises doivent étudier leurs travaux, leurs publications, leurs rapports de projets, les données RH et ERP et beaucoup d’autres données structurées. Mais qu’en est-il des données non structurées ? Que se passe-t-il quand un composant chimique apparaît sur les rapports sous forme d’un nom générique, d’une marque, d’un terme scientifique ou même d’une structure moléculaire ? Comment faire le rapprochement et consolider toutes ces données?

Un large spectre d’entreprises a mesuré les gains considérables que peut apporter une recherche  fructueuse (et parfois même une seule !) de ce type. Elles l’ont compris et ont adopté avec succès l’analyse de leurs données d’entreprise pour trouver les véritables experts. Ces derniers pouvant contribuer avec leurs différents points de vue, chacun selon son domaine d’expertise. Ces entreprises deviennent plus agiles grâce au Big Data : la coopération de leurs équipes devient plus fluide et rapide, elles peuvent rapidement constituer les meilleures équipes pour un projet innovant ou pour répondre au besoin d’un client. C’est le cas du géant de l’industrie pharmaceutique – AstraZeneca, du spécialiste mondial des Hautes Technologies – Siemens et de la grande multinationale de conseil et de services IT- ATOS. Ces entreprises ont choisi Sinequa pour concrétiser leurs projets de « Découverte de Réseaux d’Experts », en partant de leurs données structurées et non structurées, aussi bien internes qu’externes à leurs entreprises. Sinequa les a rapidement convaincus par sa capacité d’analyser toutes ces données en créant une vision globale sur les véritables experts sur un sujet précis.

Pour en tirer davantage de sens et obtenir des résultats plus pertinents, les données sont analysées en utilisant le « Natural Language Processing » (NLP), une solution de recherche avec des capacités linguistiques et sémantiques. La plateforme identifie dans un même espace sémantique, des documents qui traitent d’un sujet mais qui n’utilisent pas forcément les mêmes mots. Par exemple, une recherche sur l’aspirine proposera aussi des résultats sur les termes : Acide acétylsalicylique, acide 2-Acetoxybenzoique, Ecotrine, Acenterine, Acylpyrine, Polopiryna, Easprin, et Acetylsali-cylate. Mieux encore,  les experts sur un même sujet – apportant des expertises similaires ou complémentaires – sont mis en relation.  Non seulement on trouve la « Dream Team » pour relever un défi, mais les personnes apprennent qui de leurs collègues travaillent sur le même sujet et entrent en contact, évitant ainsi des travaux redondants. Cela améliore considérablement la productivité globale de la R&D.

A l’instar d’AstraZeneca et de Siemens, Atos compte des dizaines de milliers de collaborateurs. La SSII a évolué d’une société française de 2 000 personnes pour devenir un acteur global d’environ 90 000 personnes, suite à plusieurs acquisitions dont celle de Siemens Information Systems et de ses 30 000 salariés en 2012 ainsi que de Bull et Xerox ITO en 2014.  Grâce à une plateforme leur permettant de brasser des masses de données structurées et non structurées, ils ont su répondre à la problématique d’identifier rapidement des experts sur un sujet et de constituer très rapidement, une équipe projet efficace. L’enjeu étant ici, la capacité de la SSII à répondre dans les délais à un appel d’offres, à fournir LES spécialistes attendus par un client…

Pour les entreprises avec d’importants projets de R&D ou de grands projets technologiques, trouver l’équipe idéale au bon moment peut avoir des conséquences économiques aisément mesurables. Cela leur permet d’éviter les développements redondants et coûteux et de réduire le temps de lancement de nouveaux produits. Le gain de temps sert ainsi à améliorer la satisfaction clients avec un meilleur service et des projets plus rapidement déployés.

Nos différents cas d’usages seront approfondis au Congrès Big Data Paris, le 10 mars prochain. RDV au CNIT- salle Goethe à 16h30 – pour une session plénière aux côtés d’Atos, à la fois partenaire et client de Sinequa.

Pour une vision d’ensemble, ne manquez pas notre workshop où nous présenterons des démos et cas concrets. Cette session plus intime se tiendra en « salle A » plus tôt dans la journée (11h30).

Pour participer, inscrivez-vous ici.

Au plaisir vous y rencontrer !

L’équipe Sinequa.

 

 

+1Share on LinkedInShare on Twitter